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Limitations of previous models
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SDEdit: Guided Image Synthesis and Editing with Stochastic Differential Equations, ICLR 2022



Limitations of previous models

- Focuses on Global Generation
- Hard to capture complex details of texture patterns

- Datasets lacks of complex texture patterns
- Dataset biased to general scenes, objects, facial expressions..

- Difficulty in semantic control
- Simultaneously maintaining texture pattern and modifying specific feature is hard



TexSliders: Results
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TexSliders: Results
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Methods: Step by Step

“metal” CLIP

text embedding | image embedding

Encode given text prompt with CLIP text encoder



Methods: Step by Step

“metal” CLIP
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Input: Text Embedding + Noise
Output: Image Embedding




Methods
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Methods

Focus on Image Embedding space, 768 Dimension
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Image embedding space encodes inherent features of the image.

We should finding principal “direction” that changes the feature to modify it.
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Embeddings obtained from same text prompt are mapped to similar spatial location.
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Obtain vector from “metal” embedding cluster to “rusty metal” embedding cluster
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Naive Approach: Connect centroids of each cluster dj = ( tJ( ) — Oj )
-> Leads to poor result. Ne 2 i



Methods
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“metal” Image Embeddlng Space
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Selectively choose dimensions that dj =4 J | Jl k (J ) | Jl i ( J )

actually contributes to desired edit. 0, otherwise.



Methods

A if |d| > 7 std(t( ) and || > 7 std(o())
j:

0, otherwise.

Distance between cluster centroids: Inter-Cluster Variability.

How much does embedding change in following dimension in cluster change.



Methods

A if |d| > 7 std(t( ) and || > 7 std(o())
j:

0, otherwise.

Standard deviation within cluster: Intra-Cluster Variability.

How much does embedding change in following dimension within same cluster.



Methods
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dj _ d}, 1f|d3-| > T - Sid(tJ( )) and |d;| > T.stid(oj(_l))
0, otherwise.

IF
Inter-cluster variability > Intra-cluster variability: The dimension is sensitive to desired edit

Intra-cluster variability > Inter-cluster variability: Dimension is sensitive to other features
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Alpha can work as an “slider” to control amount of “rustiness”
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Qualitative Results
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Results - Comparison
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Results - Ablation Study
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Results - Applications

Input Texture
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Limitations

Input Texture
In some cases: ; '
- CLIP & diffusion model can be more sensitive to some |
concepts , :
fabnc with "fabric with

vertical stripes”  horizontal stripes"

- Identity of the input texture is not perfectly preserved

- Extrapolating in the editing direction too far from the , ~
input texture can hamper identity — — i il

"aged wood" "new wood"






